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Non-classical integral equations for Laplace's equations, which give increased accuracy in numerical calculations, are employed 
to solve Saint-Venant's problem (the torsion and bending of a cylindrical rod by a force) and the problem of anfiplane deformation. 
It is shown that for a unique determination of the solution of the initial problem in the case of multiply connected regions, the 
equations must be solved simultaneously with additional conditions, the number of which is determined by the connectedness 
of the region. The integral equations are solved analytically for certain specific regions: an infinite strip, a circle and a circular 
ring. © 2002 Elsevier Science Ltd. All rights reserved. 

Two-dimensional problems of the theory of elasticity - torsion and antiplane deformation - were 
investigated in [1-3] by the method of boundary integral equations, where the harmonic functions of 
torsion or stress were investigated in the form of the potentials of a simple or double layer with unknown 
density. 

The purpose of the present paper is to solve these problems, and also the problem of bending by a 
force, employing new integral equations for Laplace's equation, obtained previously in [4] by a direct 
method using an integral identity. In the two-dimensional case the kernels of these equations are identical 
with the kernels of the equations of harmonic potential theory. However, unlike the integral equations 
considered earlier in [1-3], the unknowns in these integral equations are boundary values of the stresses, 
which increases the accuracy with which they can be determined numerically. The right-hand sides of 
the integral equations are determined by the boundary conditions and the values of the divergence and 
curl of the vector of the shear stresses in the region, which are known in all three of the problems 
considered. 

For multiply connected regions the solution of the integral equation is non-unique. It is shown that 
in this case the integral equation must be solved simultaneously with the condition for the axial 
displacement to be unique, expressed in terms of the circulation of the vector of the shear stresses. 

Exact solutions of the integral equation are obtained for an infinite strip, a circle and a circular ring, 
which may serve as reliable tests of the use of the boundary-elements method. 

1. D E R I V A T I O N  O F  T H E  I N T E G R A L  E Q U A T I O N  

Consider a multiply connected region - the cross-section of a cylindrical body. We will use the following 
notation: G is an open region of connectedness m, F = Ft + FE + Fm+a is the Lyapunov boundary of 
the region, the contour Fi is the boundary of the ith opening - the region Gi (i = 1, 2, ..., m),  Fn+l is 
the outer contour, is (a  = 1, 2) is a Cartesian basis in the plane, k = ia × i2 is the unit vector of the axis 
passing through the centre of inertia of the sections, O is the origin of the system of coordinates, n and 
s = k × n are the outward normal and tangent to F, r = rp - rq is the radius vector from the source 
point q to the integration point p, and the prime denotes rotation of the vector by an angle n/2: 
a'  = k x a .  

The following identity holds for the plane vector 7 = ial:a and the scaler 0 

J'[ -ao + (v o  -)vo + (v' °,Ov'O]dG = j'[ ,ve +  ,v'o]ar, (1.1) 
G F 

where V = i~/~x~ is the two-dimensional Hamilton operator, A = V o V is the Laplace operator, and 
x, = n o a- and xs = s o ,r are the normal and tangential components of 7. 
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Suppose 0 --- (2n) -1 In r is the fundamental solution of Laplace's equation in the plane r = ] r [. Then, 
from identity (1.1) we obtain the following representation for the vector a" at an arbitrary point q of the 
region G 

] "~ r r l r ' r---V' o a" G_ "r(q)=-~ !( n ~~+xs-~ldFp---I(---f V°'r+ r2 )de  2nGt, r 
(1.2) 

Assuming that the component Zs is continuous on F and Xn satisfies the Lipschitz condition [5], by 
taking the limit q ~ G --) P0 ~ F in representation (1.2), projected onto the tangent So at the pointp0, 
we obtain an integral equation for zs 

] n o o r  

I , ( s o o r ~  n o o n  , "~ 
- - -  J / - -7-g-vo ' r  +----ST--V o'rldGp = f(P0), 

~Gk r r ) 
(1.3) 

where no is the normal at the pointp0 andf(p0) denotes the right-hand side of the equation. The contour 
integral on the right-hand side of integral equation (1.3) must be understood in the sense of the Cauchy 
principal value [5]. 

2. D E T E R M I N A T I O N  OF T H E  R I G H T - H A N D  SIDE OF T H E  I N T E G R A L  
E Q U A T I O N  FOR P R O B L E M S  OF THE T H E O R Y  OF E L A S T I C I T Y  

Integral equation (1.3) can be used to solve the torsion problem (Problem 1), and the problem of bending 
by a force (Problem 2) and the second boundary-value problem of antiplane deformation (Problem 3), 
if the vector "r is taken to mean the vector of the resultant shear stress. 

The normal component occurring on the right-hand side of the integral equation satisfies the following 
equation 

x, lr = T(s) (2.1) 

where T(s) =- 0 in Problems 1 and 2 and T(s) is a known function of the arc coordinate - the specified 
external load in Problem 3. 

Further, using well-known representations for the vector of the shear stresses "t in region G [6, 7], 
we calculate its divergence and curl 

V o ~ ( p ) = - r p o l - t o Q ,  V • 

7 '  o x ( p )  = 2go~ + 1 + v rp o I - '  o Q ( 2 . 2 )  

Here cz is the torsion angle per unit length of the body axis in problem (the mean over the cross-section 
in Problem 2), a - 0 in Problem 3, Q is the transverse force (Q - 0 in Problems 1 and 3), I = ~rprpdGp 

u 

is the tensor of the moments of inertia of the section, bt is the shear modulus and v is Poisson's ratio. 
Hence, the right-hand side in integral equation (1.3) is known in all three problems. It was obtained 

for Problem 1 previouslyt and can be represented in the form of a contour integral, which is convenient 
for practical calculations 

f(Po) 2g0t . n o o r  2gOtn0 . ! . . . .  n a J - - ~ d G p = -  n ° ~nln rdFp = 2 g ° t r  n s° ° rs° r - r -  ~ dlp 

From the projections of xs obtained by solving integral equation (1.3) and the quantities %, V o a-, 
V' o ,r, known from (2.1)-(2.3), the shear stress T at any point of the region G is determined by integration 
in relation (1.2). 

tNIKITIN, E N., Boundary integral equations in stresses for problems of the statics of plane elastic systems. Candidate 
dissertation 05.23.17, Leningrad, 1990. 
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3. THE INTEGRAL EQUATION IN A MULTIPLY CONNECTED 
REGION;  A D D I T I O N A L  CONDITIONS WHICH ENSURE THAT 
THE INITIAL PROBLEMS OF THE THEORY OF ELASTICITY 

ARE UNIQUELY SOLVABLE 

It is well known [5], that homogeneous integral equation (1.3) is conjugate to the homogeneous integral 
equation of the internal Dirichlet problem for Laplace's equation 

¢ a ( p o ) + / ! t o ( p ) - ~ d T  ", =0  (3.1) 

In the case of a single connected region, Eq. (3.1) has only a trivial solution, and in the case of a multiply 
connected region it has m linearly independent solutions [8] 

t'°i(P)={oCi, ' pq~l-, ipEFi 

Here and everywhere henceforth i = 1, 2 . . . . .  m and Ci are arbitrary constants. Then homogeneous 
integral equation (1.3) also has m linearly independent solutions. In problems 1-3 this is connected 
with the possible non-uniqueness of the axial displacement w in the multiply connected region. 

Suppose b i is the increment of the function w when going around the ith opening 

t,i = Is , ,  V w a r  (3.2) 
ri 

The condition b i = 0 ensures that w is unique. When the expressions for Vw are taken into account 
[6, 7], after calculations we obtain from (3.2) a generalized formula for the circulation of the shear stresses 

S rsdF=labi _ 21.ttxSi _ V Q o I - J .  Sr't, dG p (3.3) 
l- i ] + V Gi 

where Si is the area of the ith opening (region ai) .  
Thus, for the multiply connected region integral equation (1.3) must be solved simultaneously with 

conditions (3.3). 

4. EXACT SOLUTIONS OF THE INTEGRAL EQUATION FOR SOME 
OF THE SIMPLEST PROBLEMS 

The torsion o f  an infinite strip { Ixl < hi2, lYJ < oo}. The integrals over the unbounded region G and 
the boundary F = F+ u F_ are considered in the sense of the principal value. Then, the following system 
of integral equations follows from integral equation (1.3) 

+** :I: _±. _h , (____y)_ 
zs tY°)+ n J ( y - y 0 )  2 +h 2 dy=2~toth ( z~s(y) -zs  Jr±) (4.1) 

The solution of the system of integral equations (4.1) is a quantity x~(y)  = ~tt~h which is constant on 
F_+. Using expression (1.2) we can determine the known shear stress [6] in the strip a" = 2paxi2. 

Problems 1 - 3 f o r  a circle. Integral equation (1.3) takes the following form in polar coordinates 

] 2rt 
"Cs (tP0) + ~ I Xs (q~)dtp = f(tp0 ) 

0 
(4.2) 

Problems I and 2. The right-hand side of integral equation (4.2) has the form 

f(Cpo) --- 2~ffa + ! + 2--------~v a2Q o So 
4(I + v)/ 
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where a is the radius and I = I-fft4/4 is the moment of inertia of the circle. The solution of integral equation 
(4.2) is then 

Xs(tO0)=l.tota.~ 1+2v a2Qoso 
4(1 + v)/ 

From formula (1.2) we determine the shear stress in the circle 

~r(p) = ~ttxr~ + (8(1 + v)/) -t [((3 + 2v)a 2 - (i - 2v)r 2)E - 2(I + v)rprp ] o Q (4.3) 

where E = iaia is the unit tensor in the plane. 

Problem 3. Suppose the external load has the following form: T(to) = exp (in tO), n >t 1. From the 
well-known properties of the singular Hilbert operator we have 

f(tOo) = ! _  i exp(intO)ctg to~-to° dtO = iexp(intOo) 
Zl~ -n Z 

The solution of integral equation (4.2) has the form Xs(tOo) = f(tO0) and the shear stress in the circle 
will be 

a-(p) = exp(intOp)5,"-2al-" (rt, + ir~) 

Problems 1 and 2 for a circular ring. Suppose ak are the radii of the circles - the contours irk; 
~ I Fk = "~sk,fl Fk = fk  (k -- 1, 2). Forp0 ~ F k we can successively write the following integral equations 
in a polar system of coordinates 

, ,xk 2n a 2~a j ., to)dto+ I cos to-too) Zlt 0 It, o r2 Xs,3_ k (to)dto = f~ (to), k = 1,2 (4.4) 

The right-hand sides of system (4.4) have the form 

fk(p)=(k-I)n+F~Qoe'p, ep=  r-L, H=2p.tza2(l-a2--~ I ] 
r. 4 )  

a -a? 1+2v _a_, ) 
Fw= 2 ( l + v ) l '  4(l+v)--------~ i a~Ja2; I =  (a4-a  t) 

(! is the moment of inertia of the circular ring). 
Searching for a solution of integral equation (4.4) in the form 

"csk (to p) = Ck + AkQoe'p + BkQoep, k = l , 2  

we obtain a subdefinite linear system of equations for the required constants 

a?  
A =F2, A2+A, F,, /~2+ a 2 + - - - f , . ~  = B T = 0 

a 2 a 2 

B2 + B, =O, c2 + a' c, = H 
a2 

We will write the condition for the displacement (3.3) to be unique in the form 

2rta, C~ =-21aar~a~ 

As a result, the solution of system (4.5) and (4.6) is 

C, = -~t(:~a I , C 2 = laota 2, B I = B 2 = 0 

A~ = ( - I ) k ( 4 ( I  + v ) / ) - ' ( ( l  + 2 v ) a  2 + ( 3 +  2v)a~_k), k = 1,2 

(4.5) 

(4.6) 
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After fairly lengthy calculations, from (1.2) we determine the shear stress, written in coordinate-free 
form, not found in the literature. It differs from solution (4.3) by the replacement of a22 by a 2 + a 2 + 
a2a2r~ 2. In the special case when Q = Qlil it is identical with the known formula [6], and it degenerates 
to solution (4.3) as al ~ 0. 

5. T H E  I N T E G R A L  E Q U A T I O N  F O R  T H E  P R O B L E M  OF 
A N T I P L A N E  D E F O R M A T I O N  F O R A D I S P L A C E M E N T  

S P E C I F I E D  ON T H E  B O U N D A R Y  

The integral equation has a form similar to (1.3), namely 

1 !  _ ~  Ir soor ~n(po)- ~n(p) dip =--j~,(p)-~_2--:r:arp- 
~F r 

I rfno or,~ s0 or,~ , - - -  j / ~ v o , r - - - - F - v  ox jdGp 
~G\  r r 

(5.1) 

The tangential component  of the stress vector on F is known: xs = ~ts o Vw I r. In the case of a simply 
connected region integral equation (5.1) is uniquely solvable, like integral equation (1.3). However, 
for a multiply connected region it solves an m-parametric family of boundary-value problems with 
displacements specified on the boundary, since, on the right-hand side, a tangential derivative ofw occurs, 
which is not sensitive to mutual translations of the contours as rigid bodies. Hence, direct practical use 
of  integral equation (5.1) is difficult in this case. 
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